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Abstract
Biological web data sources have now become essential 
information sources for researchers. However, their use is tedious, 
labor-intensive, repetitive, and possibly involve the integration of 
data from multiple web data sources. In this paper, as a first step 
towards the full integration of web data sources, we propose a 
framework that allows an integrated use of biological sources in a 
task-oriented manner. We define and experimentally evaluate a 
toolkit-based framework for semi-automatically constructing an 
integrated (software) system that automates and optimizes the 
execution of a biology-related computational task at hand. To test 
and refine the principles of the framework, we build and evaluate 
“Pathway-Infer” as a benchmark integrated system. 

1. Introduction 

In recent years, the number of biological web data 
sources on the web, and the quality and the quantity of 
information available to biologists have increased at a 
very fast rate [8, 9]. Such data sources are now 
essential to biologists. However, for computational 
tasks involving an answer to a biological question, 
biologists often extend large amounts of time and 
effort to (a) manually use the web interfaces of 
biological data sources, (b) extract and import data into 
their own environments, (c) relate various 
disconnected information found in the extracted data, 
(d) refine the search criteria, and (e) repeat the whole 
process from the beginning. The characterizing 
property of the computational tasks referred to here is 
that they all involve repeated access to biological web 
data sources, and integration/interpretation/analysis of 
the accessed data. We give an example. 
       Example 1. (Inferring metabolic pathways). Presently, 
there are a large number of organism-specific pathways on the 
web (e.g., Kegg [18] and aMaze [2]).  Case Pathways Database 
(PathCase) [11] contains human and mouse metabolic pathways 
as well as pathways that do not directly belong to an organism 
(from [21]) (i.e., generic pathways). We would like to 
implement a software system, called Pathway-Infer, that allows 
users to infer organism-specific versions of a given pathway. In 
other words, the system allows users to execute tasks of the type 

T: “Find, using the biological data sources on the web, 
organism-specific versions of a generic pathway P”.

Pathway-Infer is an “integrated” system in that it integrates 
data obtained by repetitive querying/accessing of possibly 
multiple web data sources.  The goal of integrated software 
systems is to facilitate a wet-lab verification process by 
providing the user with the data of interest through 
integration of relevant information, database comparisons, 
literature search, and other web-based searches.  This 
serves in reducing the search space and provides a starting 
set of steps to be verified in the wet-lab. 
       In this paper, to illustrate the issues and as a running 
example of an integrated system, we build and 
experimentally evaluate the Pathway-Infer system. And, to 
simplify the presentation, we assume that Pathway-Infer 
integrates data from a single web data source, e.g., NCBI 
[18] or KEGG [22]. Our goal is to enable biology 
researchers to build an integrated software system which 
accesses multiple biological web data sources, integrates 
the retrieved data, and solves the task at hand.  Our 
approach is toolkit-based and employs (i) human-assisted 
and task-oriented data and functionality modeling of 
biological web data sources--for only the information 
needed for a given computational task, and (ii) component-
based and interactive integrated system construction.  More 
specifically, in this research project, we build a framework 
and a toolkit for the following tasks. 
       1. (Data source) model (construction) toolkit for a 
data source allows the designer of an integrated system to 
model parts of a biological web data source in terms of 
entities, attributes, and relationships of the ER data model 
[13]. This tool allows the designer to extend the data 
model as and when needed. (We distinguish two types of 
individuals: the designer of the integrated system is a 
computational scientist who designs and builds semi-
automatically the integrated system targeted to solve the 
given task. The designer needs to be knowledgeable 
about biology, and is not necessarily the end-user of the 
integrated system. The end-user, referred to as the user, is 
a biologist who uses the integrated system for the 
research problem at hand.) 
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       2. (Data source) functionality (construction) 
toolkit: Each web form/page/service of a data source 
represents a certain functionality for that data source. 
A toolkit is built to identify each data source function 
needed, and to define the associated input and output.  
       3. (DesignerDefinedFunction) DDF library: To
generate an integrated system for a given task, various 
functionalities (e.g., output filtering, scoring, etc.) are 
defined and coded by the designer, and made available 
in the DDF library. 
       4. (Integrated task-based) system (construction) 
toolkit: This toolkit allows designers to put together 
the desired integrated system, component-by-
component, using (i) the available data models of data 
sources, (ii) functionalities of data sources, and (iii) 
functionalities made available via the DDF library.  
       We make the following observations about the 
toolkit approach. First, the data models of web data 
sources should be extracted--with guidance from the 
designer and only for the task at hand. This involves 
discovering entity and relationship types and their 
instances, for a given data source. Second, the generated 
integrated system needs to be capable of optimizing its 
execution via a “task implementation plan”. In this 
paper, we characterize various cost measures and 
discuss task implementation plan optimization.  
       Note that the integrated system needs to be 
“parameterized” in that it not only solves the task at 
hand, but also it is useful for a class of tasks. And, once 
an integrated system is built for a given task, extending 
it to similar tasks is likely to be easy—to the point that 
the user, not the designer, can revise it unaided. 
Moreover, the level of integrated systems is such that 
computationally-aware biologists as users are able to 
generate integrated systems for relatively simple tasks 
(and simple task changes). Finally, the integrated system 
needs to be enhanced with additional capabilities, 
namely, score management functionality, ontology 
modeling, and text management capabilities—to save 
space, these issues are not discussed in this paper. 
       The main contribution of this paper is to define 
and experimentally evaluate the first version of a 
toolkit-based framework approach for semi-
automatically constructing a software system that 
automates a biology-related computational task at 
hand. To illustrate, test and refine the principles of the 
task-oriented biological web data source integration 
framework and to generate the first versions of the 
three toolkits and the DDF library, as a benchmark 
system, we discuss the generation of the Pathway-Infer
system. Our long-range objective in this research is to 
develop a task-oriented biological web data source 
integration framework and a toolkit for a number of 
bioinformatics-related computational tasks, as well as 
for distribution to the research community.  

       The toolkit approach to solving biological problems is 
not new; see myGrid [36], BioSpice [3] and Seed [29]. The 
novelty of our approach can be summarized as follows. (a) 
It is targeted for task-oriented web data source integration 
in such a way that it can answer the immediate needs of 
biologists. (b) Once the toolkits are in place, the integrated 
system building effort will be relatively easy and 
automated. (c) The framework is firmly grounded in data 
modeling, providing an information-rich framework, 
allowing further advanced extensions to the toolkits such as 
adding data mining functions. Note that biological data 
sources on the web are autonomous--maintained and 
managed independently and with little coordination with 
each other. For flexibility and usability, we also develop a 
framework that does not rely on a cooperation from (the 
administrators of) data sources.  
       Section 2 elaborates on execution steps of the 
integrated system, pathway-infer, and presents data 
model, functionality model and task implementation 
plan representations. In section 3, we discuss designer-
guided data model extraction from web data sources. 
Section 4 describes alternative task implementation plan 
discovery and optimization issues and, finally, in section 
5 we present experimental results to evaluate the cost 
and optimization models described in section 4.  

2. Inferring Metabolic Pathways  

       Task T of Example 1 can be implemented roughly as 
follows: given a catalyzing enzyme of a process p in a 
generic pathway P (of PathCase), the integrated system 
checks whether a homologous enzyme for organism o is 
known to exist in biological web data sources.  If it does then 
the inference is that p also exists for organism o. 
Additionally, assuming that the process p for organism o has 
all the compounds participating in the generic process p 
(which is commonly the case), and repeating this procedure 
for each process in pathway P, the system infers the version 
of P specific to organism o. Next we list the implementation 
steps of task T using the existing functions of data sources.  
Steps of Task T:

1. Query Entrez:Gene, and locate all (Entrez:Gene) 
gene id’s using either the enzyme name and/or its EC#. For 
this step, there are two alternative ways: (a) query (using a 
web form) the NCBI E-utilities http site [22], or (b) query 
NCBI ESearch web services [23].Let the resulting gene set 
(with Entrez:Gene gene ids) be Ge. This step has several 
possible outcomes with potential problems:  (i) generic 
enzyme names result in too many results, (ii) typos or 
incomplete enzyme names lead to no genes/proteins, (iii) 
no genes are returned for an enzyme.  To solve these 
problems, step 1 is interactive, and includes a feedback loop 
and filtering. That is, the results are verified interactively by 
the user before the system moves on to the next step. 
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2. Locate the gene product (protein) ids (gi) for each gene 
in Ge. For this, there are two alternative ways: (a) download 
gene2refseq data file (available at [25]) that lists all protein 
gis for each gene id. This step is to be implemented by the 
designer, possibly as a designer-defined function, and stored 
into the DDF library. (b) Query using the NCBI ELink web 
services [23] to locate gene product ids. 

3. Locate the protein (amino acid) sequence for each 
protein gi by querying NCBI EFetch web services [23]. 

4. Get homolog gene products by running BlastP (on a 
local machine) using the protein sequence (and properly-
chosen parameters, such as “E-value”) to obtain similar 
protein sequences. Call this set HomGP. In this step, the 
user needs to experiment with the proper input parameters, 
e.g., E-value of the blast search. Also, this step is likely to 
be time-consuming due to multiple blast searches. 

5. Get homolog protein genbank identity number gi for 
each gene product in HomGP. Let the resulting set be 
HomGPid. This step is pre-implemented by the designer, 
and stored into the DDF library. 

6. Obtain gene id for each gi in HomGPid. There are two 
alternatives: (a) Download and access the file gene2refseq
(as in step 2). (b) Use NCBI ELink web services function 
(as in step 2). Let the resulting gene id set be HomGid.

7. Get detailed information for each gene (gene id in 
HomGid) and gene product (gi in HomGPid) from the 
gene2refseq file and the gene_info file [25]. 
       Currently, the steps itemized above can only be done by 
the user directly accessing each data source, manually 
analyzing each output (likely to contain thousands of entries), 
manually extracting the data for the next query, and posing 
the next query to the next data source. Considering that each 
input to the next web data source needs to be 
entered/processed one-by-one through a web form interface, 
obtaining the results is labor-intensive, and takes a long time.  

Figures below present (a) (parts of) the ER data model 
(i.e., entities and relationships) used to implement task T
(Figure 1), and functions provided by the data source (i.e., 
NCBI for our running task) and DDF library (Figure 2.a-c), 
and (b) the task implementation plan, i.e., functionality 
implemented at each step, possible feedback loops and 
filtering (indicating returns back to earlier steps), and the 
needed interaction points (Figure 3). We make the 
following observations. First, from Figure 1, the data model 
needed to implement task T involves few entities and 
relationships, and is not complicated. Second, the 
functional data model of Figure 1 and the task 
implementation plan of Figure 3 can be defined semi-
automatically with assistance from the designer relatively 
easily (i.e., designer-assisted data and functionality 
modeling). Third, once the data model and functionality are 
defined, with careful system-building techniques, they can 
be extended to other tasks by adding new data model 
entities and relationships, new data source functions, or 

new designer-defined functions (i.e., extensible data and 
functionality modeling). Fourth, the integrated system gets 
feedback from the user and filters its output at any step (i.e., 
interactive system with feedback loops and filtering). Fifth, 
in step 1, in addition to Entrez:Gene, another data source 
about gene ids may be used to enrich the output of step 1 
(i.e., entity enhancements).  Task T demonstrates the 
advantages of task-based integrated systems employing 
autonomous data sources with a specific research task in 
mind. We have illustrated with an example that developing 
a component-by-component solution (one component per 
task implementation step) for the integration of biological 
web data sources is a promising research direction, 
considering the benefits and the usefulness of the resulting 
integrated system. 
       A web data source provides a two-folded view, i.e., 
data stored in the data source, and a set of functionalities 
made available through web forms. And, in order to build a 
task-oriented integrated system based on the available 
functionality, a task implementation plan needs to be 
constructed. In the following section, we discuss the 
representation and formalization of such structures for the 
Pathway-Infer system.     

2.1. Data Model 

       To simplify presentation, Pathway-infer is 
constructed using the data and the functionality provided 
by only one data source, namely NCBI. Figure 1 
illustrates the data model of NCBI, involving only those 
data components which are required for Task T. In this 
model, entities, attributes, and relationship between the 
entities are represented in ER notation [13]. Each entity 
name is preceded by the data source name, and 
concatenated with type information which is required for 
modeling the functionality of web data sources. As 
discussed in Section 3, the data model can be extracted in 
a designer-assisted manner. 

NCBI:
Enyzme

Name:str

EC#:str

ID:str

Seq.:str

GeneID:str

NCBI:GeneName:str

ID:str

E-G

E-E

Homologous

Homologous

Organism:str

Figure 1.  NCBI Data model for Task T

Data Source

Web Form/Page,
or Function Group
Function

Function
input/output

LEGEND

Data Source:
Entity:Attr

Function input/output,
not included in the
data model

Func:cost

Attr:type

Figure 2. (a) Legend forFunctional Models
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NCBI

WebForm1:url

Enzyme
:EC#

Gene:
ID

F1:cost1

Enzyme:
Name

Gene:
ID

F2:cost2

WebService:
E-Search:url

Enzyme:
EC#

Gene:
ID

F4:cost4

Enzyme:
Name

Gene:
ID

F5:cost5

WebService:
E-link:url

Enzyme:
ID

Gene:
ID

F6:cost6 F7:cost7

Enzyme
:ID

Gene:
ID

WebService:
E-Fetch:url

Enzyme
:ID

Enzyme:
Seq

F8:cost8

Enzyme:
ID

Enzyme:
Seq

F3:cost3

Figure 2.(b) NBCI Functional Model for Task T
DDF

Library

BLAST

NCBI:
Enzyme:Seq

F9:cost9

gene2refseq

NCBI:
Enzyme:ID

NCBI:
Gene:ID

F10:cost10

getInfo

F12:cost12

E-Value:str

F11:cost11

NCBI:
Gene:ID

NCBI:
Enzyme:ID

NCBI:
Gene:ID

NCBI:
Gene:Name

Cutoff :int

Matrix::str :
restricted

Strand:str:
restricted

NCBI:
Enzyme:ID

NCBI:
Gene:Org

NCBI:
Gene:Org

Figure 2.(c) DDF Library Functions Required for Task T

2.2. Functional Model 

       For functionality modeling of a given data source, each 
related web form/page/service of a data source is represented 
as a set of functions with the guidance of the designer. We 
model the functionality of a web data source via a 
hierarchical structure where each data source contains the 
web forms/services/pages, and finally, the set of functions 
are provided by each web forms/pages/services. Figure 2.(b) 
illustrates the functional model for NCBI. Note that, in figure 
2(b) the functions listed under each origin (e.g., BLAST, 
gene2refseq) represent different querying capabilities of the 
data source and have different input/output specifications. 
The same functionality can be found at different web origins. 
In this case similar functions with same input and output 
specifications can be used as alternatives (See example 2).  
       Example 2. In Figure 2.(b), F1, F2 and F3 represent 
different functionalities of the WebForm1 and function F4 of E-
search web service can be used as an alternative to F1.

The designer creates a function by specifying its name,
url of its origin, and input/output parameters which are 
mapped to an attribute or a set of attributes of the entities 
represented in the data model of a given web source. 
Occasionally, some functions may require input parameters 
which are not included within the data model for a specific 
task (e.g., E-Value for blast function in DDF library, function 
F9). In order to specify the nature of input and output of the 
functions in terms of the components provided in the model, 
we denote them as [entity name]:[attribute name]. Besides, 
each function has an associated cost value as discussed in 
section 4. We also represent the DDF library like a web data 
source without a data model specific to itself (i.e., it uses the 
available data models of web sources to type its function 
input/output parameters). Sample DDF library functions 

required for Task T are demonstrated in Figure 2.(c). The 
entire model is the same as that of a web source except the 
fact that, instead of web forms or services, DDF library uses, 
designer defined function containers which organizes similar 
functions into the same named group. Note that the presented 
function set is not complete in that there are many other 
functions included in the library, and used in the context of 
pathway-infer, but have not been shown here due to space 
limitations. 

2.3. Task Implementation Plan Representation 

       Once the designer has the functional and data models for 
a given task, the implementation plan for the task can be 
constructed through designer guidance. The task 
implementation plan defines the sequence of functions to be 
executed, and the order of execution so as to complete the 
task T. Therefore, each step of the implementation plan 
corresponds to a function or, a set of functions where each 
function provides an alternative (e.g., step 2 in Figure 3), or 
enhances the output for that step (e.g., step 1 in Figure 3). 
Multi-function steps require branch connectors. The designer 
can put AND connector to mark that those branches are sub-
steps of the current step or, XOR to mean that it is sufficient 
to execute only one of them. The task implementation plan 
for pathway-infer is demonstrated in Figure 3.  

F2::cost2Ename

GeneID

F4::cost4EC#

Input Adj.

Input Adj.
F7::cost7

GPid

F11::cost11

F8::cost8

Sequence

F9::cost9

HomGPid

Input Adj.

GeneID

F
ilt

er
.

F6::cost6

F10::cost10

F12::cost12

Gene Details

Start

Filter.

Input Adj.

E-Value:str

some

step 1 step 2

step 4

step 3

step 5

step 6

step 0

Filter.

AND

XORAND some

some

Figure 3. Task implementation plan for task T 
       For most of the biological web data sources, it is 
usually the case that a search process through a web form 
results in multiple candidate results, mostly because (a) 
keyword search is preferred, and secondly, (b) on a web 
form, filling out all the input parameters is not usually 
required. Thus, providing some filtering mechanisms 
allows for a flexible and powerful integrated system and 
extends the overall query capabilities of data sources. 
Such an extension can happen in two different contexts: 
(a) manual selection of the subset of the results obtained 
at the end of a step, and (b) filtering through designer-
defined predicate enforcement (e.g., selecting EC(enzyme 
commission) numbers that fall into a certain range). 
Default behavior is that, after the completion of a step, the 
integrated system executes the next step by providing 
each object/value in the result set as a parameter to the 
corresponding function of the following step. If the 
designer wants to enable users to analyze and possibly 
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filter the results manually at the end of a step, the 
keyword, “some”, is used to mark filtering points. In 
Figure 3, for instance, step 2 is marked with “some”
referring to the fact that the result set of” gene id” values 
will be filtered before they become inputs to the functions 
f6 or f11 (as input parameters). The interactivity between 
the integrated system and the user is represented with 
dotted lines in Figure 3. 

3. Data Model Extraction 
       Before the construction of the task implementation 
plan, data models of web data sources should be 
extracted with guidance from the designer. In this 
section, we describe the key steps of web data source 
model extraction from web forms (due to limited space). 
A similar model extraction design steps can be also 
described for web services using the WSDL files [38].  

3.1. Entity Type and Instance Discovery 

       A web form query result page contains instances of 
one or more entity types. Firstly, the designer locates the 
web forms that would possibly be involved in the task 
implementation. Next, sample query parameters are 
submitted to the corresponding web query form. These 
parameters are provided by the designer in a sample 
query by filling out the corresponding web query form 
elements.  We give an example. 
       Example 3. In our running example, one of the 
alternatives for the first step involves finding genes by 
querying NBCI with enzyme name as a parameter. Figure 4 
illustrates NCBI Entrez Gene web form. Our sample query, in 
this case, is “find all genes associated with name ‘kinase’”, 
where the query parameter is the value ‘kinase’. Usually, this 
query returns a set of intermediate results (Figure 5), and 
clicking to one of the objects among the intermediate results 
brings a final result page that describes the details of a 
particular gene instance and is marked as an entity page 
(Figure 6).  

Figure 4. Sample query posed to NCBI Entrez Gene web form 

Figure 5. Intermediate results obtained for the sample query in Fig.4 

       The query scheme described in example 3 is valid for 
most of the biological data sources; however, there are also 
other data sources that do not conform to this paradigm 

(e.g., [17]). To simplify the presentation, in this section, our 
discussion does not take into account such data sources that 
provide different querying models.  
       Having located the entities as illustrated in example 3, 
next, we attempt to find out the attributes of the located 
entities. To this end, our goal is to automate the attribute-
value extraction process. Our approach is to compare 
different instances of the same entity (i.e., different results 
of the same web query form) and determine the repeating 
and varying parts of the output web pages. Then, repeating 
fields (e.g., gene name, organism) are presented to the 
designer as candidate attributes, and the designer selects the 
related attributes for the entity. Another alternative, but 
more naïve approach, is that the designer marks the 
required attributes manually, and the selected attributes are 
added to the data model. We give an example. 

Figure 6. Gene details result page with marked attributes of Task T 

       Example 4. Figure 6 shows the attribute names of gene entity 
that are marked by the designer as the ones needed in task T. 
Although there are other attributes of the gene entity type, relying on 
the task-oriented motivation of our framework, the designer selects 
only those attributes that are interesting to him/her in the context of 
the pathway-infer system. The selected attributes (shown as framed 
in a rectangle in Figure 6) are also named by the designer.  

3.2. Relationship Type and Instance Discovery 

       Another main component of a source data model is the 
relationships between the entities. We observe two types of 
indicators towards the existence of a relationship between the 
entities: (a) direct links between final query result pages (e.g., 
a hyperlink from pathway result page to reaction result 
page), (b) un-hyperlinked common attributes, i.e., an entity 
attribute that can be used to query another entity through one 
of the available web forms. For the latter, to discover such 
implicit links, one approach is to locate the common attribute 
types belonging to the instances of different entity types 
based on comparisons of their names, and the percentage of 
value overlaps in a sample set of instances. To illustrate the 
utilization of direct links we give an example.  
       Example 5. Data model of NCBI for task T contains two
relationships (Figure 1.a, relationships E-G and E-E). The one 
between enzyme and gene, i.e., E-G, can be inferred from the 
direct links on enzyme (i.e., protein) and gene result pages. Figure 
7 shows the direct links between gene ‘amn’ and its gene product, 
‘amp nucleoisidase’, in NCBI result pages. 
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Figure 7. Enzyme-Gene association detection in NCBI 

4. Task Implementation Plan Optimization 
       A generated task implementation plan may have lower-
cost alternatives which can be constructed using other 
functions in the function repository (either the functionality 
toolkit or the DDF library). In this section, we define 
several cost notions, and discuss alternative plan discovery 
process and optimization issues. 

4.1. Cost Evaluation and Measures 

       In order to discuss task implementation plan 
optimization issues, one needs to define cost measures to 
compare different alternative plans. We start by defining a 
set of cost measures for the functions which are the building 
blocks of a task implementation plan. For (query) 
optimization, traditional relational database management 
systems provide known properties and statistical information 
related to the various aspects of the stored data, which are 
used in (query) optimization. In comparison, for task plan 
optimization, such rich summaries (e.g., cardinalities, 
histograms, etc.) are not available for the integrated system 
we study, where queries, in the forms of web forms/services, 
are submitted to multiple heterogeneous and autonomous 
web data sources with different characteristics and 
capabilities. Given these challenges, two different 
approaches may be employed so as to model function costs. 
One is time-based cost measures, and the other is result-
cardinality-based cost measures, i.e., average number of 
objects returned by a function. In this section, we only 
consider time-based cost measures. Next, we define the 
specific measures of our function cost model. 

Average Response Time (RT): The average time elapsed 
from the submission of a query (as a function) till the 
return of the first output object. 
 Average Connection Time (CT): Average time to connect 
to the data source and to submit the query on a web form. 
Average Result Download Time (DT): After a query is 
posed to a web data source, results may be returned in a 
single XML file, a single web page, or multiple web 

pages. Distribution of results to multiple pages brings 
additional overhead to the overall execution time of a 
function. In order to capture this behavior, we define 
query result download time as the elapsed time from the 
retrieval of the first result object till the last fetched object.    
Average Output Processing Time(OT): Some web data 
sources might provide their output in such a format that 
may need pre-processing to get the desired function 
output as specified in the function definition (e.g., 
extracting a set of EC numbers from a returned flat file). 

Cost of a function is formulated as a weighted sum of the 
values for each measure so that the designer can adjust the 
weight parameters in the cost function in a way that best fits 
to his/her needs. The general structure of the cost function 
can thus be characterized as follows: fcosti = wCT * CT + wRT * 
RT + wDT * DT + wOT * OT, where wi is the corresponding 
weight assigned by the designer to each measure. Next, the 
cost of step i in the task implementation plan is computed 
based on the functions fj involved in that step and the 
connector between the functions (e.g. ‘XOR’).  

     In the step cost formulation, on the left, j stands for the 
number of functions involved in step i, and stepconn indicates 
the connector between the functions of a particular step. Note 
that, when the functions of a step are connected by ‘AND’,
the cost of the step scosti is that of the function fcostk which 
has the maximum cost among k functions in the step, i  k 
j, assuming that the functions can be executed in parallel 
within different threads. For the case of connector being 
XOR, a similar reasoning is employed. 
       Finally, the cost of a path consisting of a sequence of 
steps is computed by simply summing up the costs of 
individual functions each of which is multiplied by the 
expected number of tuples (objects) obtained from the 
previous step and are to become input to the function at 
hand. We obtain the cost of a task implementation plan 
pcost recursively as: pcost=P(1,n)=scosti+RCi * P((i+1),n)
where n is the number steps in the plan, P(i,j) is the cost of 
the subplan starting from step i and ending at step j
(inclusive), and RCi is the result cardinality of step i. We 
give an example.  
       Example 6. Concerning the cost of the task implementation 
plan (see Figure 3) for our running example, pathway-infer, for a 
single execution with a single enzyme name/EC number, we have 
the following running times in seconds: fcostF2=0.542,
fcostF4=0.446, fcostF6=2.122, fcostF10=0.513, fcostF11=1.168,
fcostF7=0.412. Finally, using the observed RC values at each step, 
the resulting step cost assignments are as follows: scost1 =
max(fcostF2, fcostF4) = 0.542, scost2 = min(fcostF7, fcostF11) = 
0.412, scost3 = fcostF8 =1.863, scost4 = fcostF9=45, scost5 =
max(fcostF6, fcostF10) =2.122, scost6 = fcostF12=1.118. Thus, the 
cost of the plan becomes: 
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= 0.542+20*(1.863+2*(45+1*(2.122+15*(1.118)))) = 2,594 
seconds = 43.2 minutes. 
       We associate each function with two variables: its 
estimated cost and estimated cardinality. The designer needs 
to provide sample inputs for each function to compute initial 
values for the estimated cost and cardinality variables.

4.2. Discovering Alternative Task Plans  

       After the designer constructs the first implementation 
plan for a specific task, it may be possible to build better 
alternative task implementation plans. Two different 
sources lead to alternative implementation plans: (a) 
function(s) marked as interchangeable by the designer, (b) 
function(s) that are inferred to be interchangeable from 
the available function matchings. Ultimately, the system 
presents the designer with a set of alternatives that make 
the overall plan less costly. 
4.2.1. Designer-defined Equivalences. The designer 
may provide the system with a set of semantic 
equivalence rules, X Y, which define functions (or
function compositions) X and Y as semantically related.
Semantic equivalence rules define function partitions
where each member of a partition can be replaced by 
any member of the same partition in a task 
implementation plan. If two functions/function 
compositions are defined to be semantically related, 
then they must have the same signature, i.e., the same 
type of input/output parameters. We give an example.
       Example 7. Assume that the following semantic equivalence 
rule set  is given by the designer:  = {F1=F2, F3=F4,
F5=F2·F3} where · denotes composition, i.e., pipelined functions 
executed one after another, e.g., F2·F3 where F3 is executed on the 
output of F2. Assume that a part of the overall task implementation 
plan is performed by a subplan sp = F2·F3. Based on the given 
rules, the system replaces some of the functions individually (e.g., 
replacing F2 with F1), or as a group (e.g., replacing F2 and F3 with 
F5) with the other functions which are defined to be included in the 
same partition by the given rules. As such, alternatives are 
constructed, and lower-cost plans are added to the set of candidate 
task implementation plans. Note that, given some equivalence rules, 
finding the top-k optimal alternatives may be exponentially 
expensive in the number of functions involved in the rules. 
However, we assume that, in a typical integrated system, most of the 
time, the number of functions involved in equivalence rules is small. 
       A semantic equivalence rule can be defined by a simple 
grammar G = (Vocabulary, Terminals, ProductionRules, 
StartState) as follows. Vocabulary = {S, OP, expr},
Terminals = {func}, ProductionRules = {S  expr OP 
expr, expr  func · expr | func, OP  |  |  |  |  | = }, 

StartState = S where all operators in OP define a semantic 
equivalence between functions. ‘ ’ is the most general 
semantic equivalence operator, while other operators in OP 
are specific versions of the general semantic equivalence 
operator in that they convey additional information on the 
quality of the relationship between the outputs of two 
functions (compositions) involved in a semantic 
equivalence rule. For instance, X Y states that X and Y are 
semantically related, and given the same input, the output 
of X is always a subset of the output of Y. Moreover, if X
OP Y is given, then X Y always holds where OP is any 
semantic equivalence operator. 
4.2.2. Inferred Equivalences.  Based on the existing 
equivalence rules, the integration system attempts to infer 
new rules. To achieve this, we introduce a set of axioms that 
can be applied repeatedly to infer all the rules implied by the 
available ones. Axioms illustrated in Figure 8 are always 
applied on the members of the same function partition 
except for the augmentation. Moreover, the axioms 
excluding augmentation never create new function partitions 
whereas they add new members to the partition that they 
apply. On the other hand, augmentation induces new 
function partitions by creating compositions among the 
members of different partitions. By generating a new 
partition, we attempt to discover additional semantic 
equivalences between newly composed functions.  

Reflexivity is trivial, e.g. if X =Y then Y = X.
Augmentation: If X OP Y where OP {  |  |  |  |  | =}, 
then for arbitrary functions Z and Q that can be composed with 
X and Y (i.e., compositions X·Z, Y·Z, Q·X, Q·Y are valid), 
X·Z  Y·Z, and, Q·X  Q·Y. In the special case of OP being 
‘=’, augmentation propagates complete equality (=) as X·Z = 
Y·Z and Q·X = Q·Y.

Commutativity: If X  Y, then Y  X, or vice versa and, if X 
Y, then Y  X, or vice versa 
Transitivity: If XOP1Y and YOP2Z, then XOP3Z where

1 2

2 1

1 1 2
3

1 2

1 2

          ' '
          ' '
        

           ' '    ' ' ,  vice versa
           ' '    ' ' ,  vice versa

         

OP if OP is
OP if OP is
OP if OP OP

OP
if OP is and OP is or
if OP is and OP is or
otherwise

Figure 8. Axioms used for inferring new semantic equivalence rules

       Example 8. Assume we have the same set of rules given in 
the previous example, i.e.,  = {F1=F2, F3=F4, F5=F2·F3} and 
the subplan for which we generate alternatives, consists of single 
function sp = F5. 

F1=F2 (given) 
F1·F3 = F2·F3 (Augmentation) 
F2 F3 = F5 (Commutative Property) 
F1·F3 = F5 (Transitivity) 

Similarly, we can derive additional rules, and obtain the extended 
rule set as ’ = {F1=F2, F3=F4, F5=F2·F3, F1·F3=F5, 
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F2·F4=F5, F1·F4=F5}. Alternative plan set then becomes =
{F2·F3, F1·F3, F2·F4, F1·F4} each of which is compared to sp = 
F5 in terms of the overall cost. Then, less costly alternatives are 
presented to the designer. 
4.2.3. Generating Plans using Equivalence Rules.
Using the designer-defined and inferred equivalence rules, 
we generate alternative task implementation plans. The goal 
here is that, based on the semantic equivalence information, 
the system attempts to find lower-cost alternatives for the 
task implementation plan constructed by the designer. For 
this purpose, after generating the possible plans, the system 
computes the estimated cost of each alternative, and presents 
the designer with a small set of “optimal” plans. Next, Figure 
9 provides an algorithm sketch to illustrate how alternative 
plans are generated using the equivalence rules. 
All_Alternatives = {original plan}; 
Repeat 
Pick a plan P from All_Alternatives that is not processed before, 
and mark it as processed; 
for each equivalence rule X op Y do 
     if X is a subsequence of the plan P, then  
        {Replace X with Y; 
         Add the resulting alternative plan into the set All_Alternatives;} 
Until there is no plan found in All_Alternatives that is not 
processed;

Figure 9. Alternative plan construction 
       Note that, the execution cost of this algorithm may 
become exponential in the number of equivalence rules 
in the worst case. However, we assume that, in 
practice, the number of equivalence rules provided to 
the system will not be very high. 
       Once the alternatives are generated, the designer may 
either keep the original task implementation plan, or choose 
among the lower cost alternatives. After the designer 
completes the construction of the task implementation plan, 
and selects an optimization method, lower cost optimal 
plans are generated accordingly. We define three different 
optimization criteria: minimum cost, maximum cardinality, 
and minimum cost per output (See Section 5).  
       There are two scenarios to maintain an optimal task 
implementation plan. One approach is, if desired, the 
integrated system can update the estimated cost and 
cardinality values of functions while the user is using and 
running the system. According to new estimated cost and 
cardinality values, if the current task plan is no longer an 
optimal one, it is dynamically replaced with the optimal 
version. Another approach is, the designer may want the 
task implementation plan to remain static and change 
occasionally. In this case, the estimated cost and cardinality 
values of functions need to be recomputed periodically by 
the designer. One can then use the following formulas to 
update the estimated cost and cardinality values. 
        fcost j = . fcost j-1 + (1- )fcost new   and fcard j = 

. fcard j-1 + (1- )fcard new, where fcost j and fcard j

are the estimated cost and cardinality values computed 
at time j, and  is the coefficient for tuning the weight 
of older values in the final value. 

5. Experiments & Results 
       We have implemented Task T functions using a single data 
source, NCBI. For each step in Task T, we developed multiple 
alternatives by employing different data access facilities 
provided by the data source. NCBI serves its data via web forms 
and web services. In addition to this, we also used NCBI’s 
“Entrez Programming Tools” in which one can run database 
access commands using HTTP GET methods and the result is 
obtained in XML format or one of several other formats.  
       We needed an input set for each function to analyze 
the number of outputs and execution times. We have two 
particular functions in our function library, each of which 
takes a keyword as input, and returns the corresponding 
protein/gene ids of protein/gene entities containing the 
keyword as a substring. We probed these two functions 
with all possible strings of length two (i.e., aa, ab,…, zy, 
zz) and collected two large sets of protein and gene ids. 
Next, we created a smaller set by randomly picking 1000 
ids from each of the large sets and used the smaller set as 
input to our other functions to collect further data 
instances consisting of various attributes such as protein, 
gene and organism names, EC numbers and so on. 
       In our experiments, we set the weights in the cost function 
(See Section 4.1) to 1. Since all of our functions use remote 
data sources and server loads vary over time, we computed 
average execution times of the functions at different hours and 
days. Sampling at different time points did not cause function 
execution times to change noticeably with respect to each 
other, since network delay affects all functions equally.  
       Finally, we pipelined necessary functions and prepared a 
task implementation plan for Task T. Then, we manually 
generated rules defining the equivalences between the 
functions. Without loss of generality, we modified the task 
implementation plan in Figure 3 so that we had a single 
function at each step by picking only one of the functions 
merged with AND and XOR operations. BLASTP is the 
most expensive function in the task plan. A single BLASTP 
function takes between 30-60 seconds depending on the 
query sequence. Hence, for experimental purposes, we 
replaced BLASTP computation with NCBI BLink operation 
which finds homolog proteins by using pre-computed 
sequence alignments and is 50 times faster than BLASTP 
operation. The task plan with Blink is still semantically the 
same task plan employing BLASTP. In practice, it is easy to 
replace BLink functions with BLASTP functions, later. 
       In our experiments, we filtered the results of the 
functions as follows. Functions taking keywords as input 
are calibrated to return only top 20 results (or less) which 
are the best substring matches with the input. For BLink 
functions, we retrieved only the top 15 results with highest 
similarity scores when more than 15 results are obtained. 
       We estimate the execution time and the number of 
outputs of a task implementation plan by using estimated 
execution times and estimated cardinalities of functions. 
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Alternative plan generation algorithm (see Section 4.2.3) 
detects several alternatives of the functions at each step of 
the original task implementation plan. The algorithm 
found four alternatives of step1, four alternatives of step2,
three alternatives of step3, two alternatives of step4, four 
alternatives of step5 and a single alternative for step6.
Thus the alternative plan generation algorithm produced 
4x4x3x2x4x1=384 alternatives for the implementation 
plan of Task T. Due to the availability of many 
alternatives for each task implementation plan step, the 
number of alternative plans grows exponentially. 
However, given the estimated cost and cardinality values 
for each function, calculating the estimated cost and 
cardinality of alternative plans can be done in less than a 
second on an average computer (P4 2.4-1GB) since little 
computation is required for each alternative, and the plans 
are not too long. For experimental purposes, we also 
executed each of 384 task plans with a small input set (5 
protein names) to observe how good our estimations are. 
       For Task T, we generated 384 different alternatives. 
Only the names of 15 alternative task plans appear in 
between every 25 plans along the x-axises of the graphs in 
the figures. To distinguish the alternative task plans, we 
enumerated the step alternatives in the result of the 
alternative plan generation algorithm. Numbers in the 
alternative plan names specify which step alternative is used 
for a particular step. For instance, 2-3-2-1-2 is used as the 
name of the plan that consists of 2nd alternative of 1st step, 3rd

alternative of 2nd step, 2nd alternative of 3rd step, 1st alternative 
of 4th step and 2nd alternative of 5th step of the original task 
plan. For the 6th step, there is only one alternative, so we do 
not consider the 6th step in plan names.  
       Figure 10.(a) shows the estimated execution times 
of different task plan alternatives. We sorted the task 
plan alternatives by their estimated costs to observe the 
cost increase by alternatives. The estimated execution 
time increases exponentially since it depends on the 
number of outputs for each step, and is proportional to 
the multiplication of the number of outputs from all 
steps. Task plan with the minimum estimated 
execution time is the time-optimal-plan.   
       Figure 10.(b) shows the estimated cardinalities of 
each alternative task plan. In figure 10.(b), we find 
alternative task plans producing the maximum number of 

results, and then, from among these plans, we can pick 
the one with the smallest estimated execution time as the 
cardinality-optimal-plan. We sort the task plan 
alternatives by their estimated cardinalities to show the 
correlation between real and estimated cardinalities.     
       Figure 10.(c) shows the execution time of each 
alternative task implementation plan divided by the 
estimated number of outputs of the plan. In Figure 10.(c), 
we can trace how the time needed to produce a single 
output varies by changing the alternative plan. Highest 
peak in this graph shows the time/cardinality-optimal-plan 
which produces high number of outputs in low estimated 
execution times. In Figure 10.(c), alternatives are sorted by 
the estimated cost per output. Also note that, alternative 
task plan orders in the x-axis of the graphs are different in 
all three figures 10.(a), 10.(b) and 10.(c). Therefore we find 
three optimal plan sets for different optimality criteria.  

6. Related Work 
Web data source integration in general is studied by many 

researchers and involves mostly the integration of commercial, 
single-primary-entity web data sources (e.g. book, car, real 
estate) [20, 16, 15, 14]. As for the integration of biological data 
[26], several integration systems have been built. Earlier 
prototypes such as TAMBIS [30], DiscoveryLink [31] and 
BioKleisli [32] focused on querying facilities of an integrated 
system rather than the integration task itself.  

myGrid [36] is a recent large scale application 
integration middleware for bioinformatics services. In 
myGrid, services (i.e., applications) are designed with open 
grid services architecture to ensure interoperability and 
reusability of the services. In addition, myGrid employs 
DAML+OIL [5] to conceptually describe its services and 
facilitate their discovery. In our work, we define the design 
steps of smaller-scale focused data integration tasks and we 
prefer the reusability of the finalized task rather than the 
smaller task components. Thus we picked a simpler model, 
namely ER model [13], as the underlying data model of web 
data sources in order to reduce the development time.  

Taverna [27], Kepler [34], BioPipe [35] and JOpera [4] 
are open-source data source integration systems using 
workflow semantics and are similar to our system in terms 
of piped execution of heterogeneous functions (i.e., actors 
in workflow semantics). Taverna system [27] incorporates 

Figure 10.(a): Estimated vs. Real path 
execution time for each path alternative

Figure 10.(b): Estimated vs. Real 
cardinality of each path alternative

Figure 10.(c): Estimated vs. Real 
execution time per output for each path
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user input to locate the workflow component alternatives to 
combine the results from alternative workflow 
components. In our system, we employ equivalence rules 
to check the integrity of a workflow (i.e., task execution 
plan), and optimize the original workflow by generating 
alternative workflows. None of Taverna, Kepler, BioPipe 
and Jopera provides workflow optimization.  

Query optimization is one of the most extensively 
researched areas of database domain [19]. Workflow 
optimization (i.e., task execution plan optimization) that 
takes place in our work is similar to rule-based [29] and 
semantic [37] query optimization work in the sense that a 
set of rules are utilized to find the best equivalent of an 
input query (i.e., task execution plans in our case). On the 
other hand, our optimization algorithm is more flexible to 
handle the incompleteness and varying reliability of 
biological data. An optimized task execution plan 
generates semantically equivalent results (from another 
data source) to the original task execution plan. However 
the optimized task execution plan is not guaranteed to 
produce exactly the same result set with the result of the 
original task execution plan. Such variations in the results 
can be desired by biologists since the reliability and 
performance of biological web sources are not the same. 

Among the biological workflow research, Ludascher et al. 
[7] describes the need for bioinformatics workflow 
applications on a real world problem (promoter identification) 
and formalizes basic structure of a workflow system. Addis et 
al. [10] defines the requirements of a general purpose 
workflow system. Buttler et al [12] introduces the problem of 
integrating services from different sources and suggest using 
semantic web as a resource discovery and data integration 
solution. IBM BCS-AIS Life Sciences Practice team [24] 
describes an algebra to analyze workflow systems and 
develops a workflow system architecture to meet the 
requirements of a bioinformatics researcher.  

Kim et al works on an intelligent assistant workflow 
construction tool called the Composition Analysis Tool 
(CAT) [28, 33]. CAT can verify the correctness of a 
workflow system and it suggests possible ways to extend 
incomplete workflows. Interactive editing and verification 
of workflows is out of the scope of this paper.  

7. Conclusion
       In this paper, we have proposed a task-oriented, 
toolkit-based integration framework for biological web 
data sources. And, we have illustrated the resulting issues 
by describing the construction of the pathway-infer
system using the functionality provided by the NCBI web 
site. We have defined and modeled task implementation 
plan representation. Furthermore, in the context of our 
running task, we have discussed the optimization of an 
implementation plan, and experimentally evaluated the 
optimality of the generated plans. In addition, we have 
defined a semantic equivalence model for the functions, 
and formalized the notion of equivalence rules based on a 
simple grammar. We have also presented a set of axioms 
enabling the system to infer additional equivalences to be 
used during the alternative implementation plan discovery 
process. 
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