
Task-Oriented Integrated Use of Biological Web Data Sources

Mustafa Kirac Ali Cakmak Gultekin Ozsoyoglu
Department of Electrical Engineering and Computer Science, Case Western Reserve University

{mustafa, cakmak, tekin}@case.edu

Abstract
Biological web data sources have now become essential
information sources for researchers. However, their use is tedious,
labor-intensive, repetitive, and possibly involve the integration of
data from multiple web data sources. In this paper, as a first step
towards the full integration of web data sources, we propose a
framework that allows an integrated use of biological sources in a
task-oriented manner. We define and experimentally evaluate a
toolkit-based framework for semi-automatically constructing an
integrated (software) system that automates and optimizes the
execution of a biology-related computational task at hand. To test
and refine the principles of the framework, we build and evaluate
“Pathway-Infer” as a benchmark integrated system.

1. Introduction

In recent years, the number of biological web data
sources on the web, and the quality and the quantity of
information available to biologists have increased at a
very fast rate [8, 9]. Such data sources are now
essential to biologists. However, for computational
tasks involving an answer to a biological question,
biologists often extend large amounts of time and
effort to (a) manually use the web interfaces of
biological data sources, (b) extract and import data into
their own environments, (c) relate various
disconnected information found in the extracted data,
(d) refine the search criteria, and (e) repeat the whole
process from the beginning. The characterizing
property of the computational tasks referred to here is
that they all involve repeated access to biological web
data sources, and integration/interpretation/analysis of
the accessed data. We give an example.
 Example 1. (Inferring metabolic pathways). Presently,
there are a large number of organism-specific pathways on the
web (e.g., Kegg [18] and aMaze [2]). Case Pathways Database
(PathCase) [11] contains human and mouse metabolic pathways
as well as pathways that do not directly belong to an organism
(from [21]) (i.e., generic pathways). We would like to
implement a software system, called Pathway-Infer, that allows
users to infer organism-specific versions of a given pathway. In
other words, the system allows users to execute tasks of the type

T: “Find, using the biological data sources on the web,
organism-specific versions of a generic pathway P”.

Pathway-Infer is an “integrated” system in that it integrates
data obtained by repetitive querying/accessing of possibly
multiple web data sources. The goal of integrated software
systems is to facilitate a wet-lab verification process by
providing the user with the data of interest through
integration of relevant information, database comparisons,
literature search, and other web-based searches. This
serves in reducing the search space and provides a starting
set of steps to be verified in the wet-lab.
 In this paper, to illustrate the issues and as a running
example of an integrated system, we build and
experimentally evaluate the Pathway-Infer system. And, to
simplify the presentation, we assume that Pathway-Infer
integrates data from a single web data source, e.g., NCBI
[18] or KEGG [22]. Our goal is to enable biology
researchers to build an integrated software system which
accesses multiple biological web data sources, integrates
the retrieved data, and solves the task at hand. Our
approach is toolkit-based and employs (i) human-assisted
and task-oriented data and functionality modeling of
biological web data sources--for only the information
needed for a given computational task, and (ii) component-
based and interactive integrated system construction. More
specifically, in this research project, we build a framework
and a toolkit for the following tasks.
 1. (Data source) model (construction) toolkit for a
data source allows the designer of an integrated system to
model parts of a biological web data source in terms of
entities, attributes, and relationships of the ER data model
[13]. This tool allows the designer to extend the data
model as and when needed. (We distinguish two types of
individuals: the designer of the integrated system is a
computational scientist who designs and builds semi-
automatically the integrated system targeted to solve the
given task. The designer needs to be knowledgeable
about biology, and is not necessarily the end-user of the
integrated system. The end-user, referred to as the user, is
a biologist who uses the integrated system for the
research problem at hand.)

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

 2. (Data source) functionality (construction)
toolkit: Each web form/page/service of a data source
represents a certain functionality for that data source.
A toolkit is built to identify each data source function
needed, and to define the associated input and output.
 3. (DesignerDefinedFunction) DDF library: To
generate an integrated system for a given task, various
functionalities (e.g., output filtering, scoring, etc.) are
defined and coded by the designer, and made available
in the DDF library.
 4. (Integrated task-based) system (construction)
toolkit: This toolkit allows designers to put together
the desired integrated system, component-by-
component, using (i) the available data models of data
sources, (ii) functionalities of data sources, and (iii)
functionalities made available via the DDF library.
 We make the following observations about the
toolkit approach. First, the data models of web data
sources should be extracted--with guidance from the
designer and only for the task at hand. This involves
discovering entity and relationship types and their
instances, for a given data source. Second, the generated
integrated system needs to be capable of optimizing its
execution via a “task implementation plan”. In this
paper, we characterize various cost measures and
discuss task implementation plan optimization.
 Note that the integrated system needs to be
“parameterized” in that it not only solves the task at
hand, but also it is useful for a class of tasks. And, once
an integrated system is built for a given task, extending
it to similar tasks is likely to be easy—to the point that
the user, not the designer, can revise it unaided.
Moreover, the level of integrated systems is such that
computationally-aware biologists as users are able to
generate integrated systems for relatively simple tasks
(and simple task changes). Finally, the integrated system
needs to be enhanced with additional capabilities,
namely, score management functionality, ontology
modeling, and text management capabilities—to save
space, these issues are not discussed in this paper.
 The main contribution of this paper is to define
and experimentally evaluate the first version of a
toolkit-based framework approach for semi-
automatically constructing a software system that
automates a biology-related computational task at
hand. To illustrate, test and refine the principles of the
task-oriented biological web data source integration
framework and to generate the first versions of the
three toolkits and the DDF library, as a benchmark
system, we discuss the generation of the Pathway-Infer
system. Our long-range objective in this research is to
develop a task-oriented biological web data source
integration framework and a toolkit for a number of
bioinformatics-related computational tasks, as well as
for distribution to the research community.

 The toolkit approach to solving biological problems is
not new; see myGrid [36], BioSpice [3] and Seed [29]. The
novelty of our approach can be summarized as follows. (a)
It is targeted for task-oriented web data source integration
in such a way that it can answer the immediate needs of
biologists. (b) Once the toolkits are in place, the integrated
system building effort will be relatively easy and
automated. (c) The framework is firmly grounded in data
modeling, providing an information-rich framework,
allowing further advanced extensions to the toolkits such as
adding data mining functions. Note that biological data
sources on the web are autonomous--maintained and
managed independently and with little coordination with
each other. For flexibility and usability, we also develop a
framework that does not rely on a cooperation from (the
administrators of) data sources.
 Section 2 elaborates on execution steps of the
integrated system, pathway-infer, and presents data
model, functionality model and task implementation
plan representations. In section 3, we discuss designer-
guided data model extraction from web data sources.
Section 4 describes alternative task implementation plan
discovery and optimization issues and, finally, in section
5 we present experimental results to evaluate the cost
and optimization models described in section 4.

2. Inferring Metabolic Pathways

 Task T of Example 1 can be implemented roughly as
follows: given a catalyzing enzyme of a process p in a
generic pathway P (of PathCase), the integrated system
checks whether a homologous enzyme for organism o is
known to exist in biological web data sources. If it does then
the inference is that p also exists for organism o.
Additionally, assuming that the process p for organism o has
all the compounds participating in the generic process p
(which is commonly the case), and repeating this procedure
for each process in pathway P, the system infers the version
of P specific to organism o. Next we list the implementation
steps of task T using the existing functions of data sources.
Steps of Task T:

1. Query Entrez:Gene, and locate all (Entrez:Gene)
gene id’s using either the enzyme name and/or its EC#. For
this step, there are two alternative ways: (a) query (using a
web form) the NCBI E-utilities http site [22], or (b) query
NCBI ESearch web services [23].Let the resulting gene set
(with Entrez:Gene gene ids) be Ge. This step has several
possible outcomes with potential problems: (i) generic
enzyme names result in too many results, (ii) typos or
incomplete enzyme names lead to no genes/proteins, (iii)
no genes are returned for an enzyme. To solve these
problems, step 1 is interactive, and includes a feedback loop
and filtering. That is, the results are verified interactively by
the user before the system moves on to the next step.

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

2. Locate the gene product (protein) ids (gi) for each gene
in Ge. For this, there are two alternative ways: (a) download
gene2refseq data file (available at [25]) that lists all protein
gis for each gene id. This step is to be implemented by the
designer, possibly as a designer-defined function, and stored
into the DDF library. (b) Query using the NCBI ELink web
services [23] to locate gene product ids.

3. Locate the protein (amino acid) sequence for each
protein gi by querying NCBI EFetch web services [23].

4. Get homolog gene products by running BlastP (on a
local machine) using the protein sequence (and properly-
chosen parameters, such as “E-value”) to obtain similar
protein sequences. Call this set HomGP. In this step, the
user needs to experiment with the proper input parameters,
e.g., E-value of the blast search. Also, this step is likely to
be time-consuming due to multiple blast searches.

5. Get homolog protein genbank identity number gi for
each gene product in HomGP. Let the resulting set be
HomGPid. This step is pre-implemented by the designer,
and stored into the DDF library.

6. Obtain gene id for each gi in HomGPid. There are two
alternatives: (a) Download and access the file gene2refseq
(as in step 2). (b) Use NCBI ELink web services function
(as in step 2). Let the resulting gene id set be HomGid.

7. Get detailed information for each gene (gene id in
HomGid) and gene product (gi in HomGPid) from the
gene2refseq file and the gene_info file [25].
 Currently, the steps itemized above can only be done by
the user directly accessing each data source, manually
analyzing each output (likely to contain thousands of entries),
manually extracting the data for the next query, and posing
the next query to the next data source. Considering that each
input to the next web data source needs to be
entered/processed one-by-one through a web form interface,
obtaining the results is labor-intensive, and takes a long time.

Figures below present (a) (parts of) the ER data model
(i.e., entities and relationships) used to implement task T
(Figure 1), and functions provided by the data source (i.e.,
NCBI for our running task) and DDF library (Figure 2.a-c),
and (b) the task implementation plan, i.e., functionality
implemented at each step, possible feedback loops and
filtering (indicating returns back to earlier steps), and the
needed interaction points (Figure 3). We make the
following observations. First, from Figure 1, the data model
needed to implement task T involves few entities and
relationships, and is not complicated. Second, the
functional data model of Figure 1 and the task
implementation plan of Figure 3 can be defined semi-
automatically with assistance from the designer relatively
easily (i.e., designer-assisted data and functionality
modeling). Third, once the data model and functionality are
defined, with careful system-building techniques, they can
be extended to other tasks by adding new data model
entities and relationships, new data source functions, or

new designer-defined functions (i.e., extensible data and
functionality modeling). Fourth, the integrated system gets
feedback from the user and filters its output at any step (i.e.,
interactive system with feedback loops and filtering). Fifth,
in step 1, in addition to Entrez:Gene, another data source
about gene ids may be used to enrich the output of step 1
(i.e., entity enhancements). Task T demonstrates the
advantages of task-based integrated systems employing
autonomous data sources with a specific research task in
mind. We have illustrated with an example that developing
a component-by-component solution (one component per
task implementation step) for the integration of biological
web data sources is a promising research direction,
considering the benefits and the usefulness of the resulting
integrated system.
 A web data source provides a two-folded view, i.e.,
data stored in the data source, and a set of functionalities
made available through web forms. And, in order to build a
task-oriented integrated system based on the available
functionality, a task implementation plan needs to be
constructed. In the following section, we discuss the
representation and formalization of such structures for the
Pathway-Infer system.

2.1. Data Model

 To simplify presentation, Pathway-infer is
constructed using the data and the functionality provided
by only one data source, namely NCBI. Figure 1
illustrates the data model of NCBI, involving only those
data components which are required for Task T. In this
model, entities, attributes, and relationship between the
entities are represented in ER notation [13]. Each entity
name is preceded by the data source name, and
concatenated with type information which is required for
modeling the functionality of web data sources. As
discussed in Section 3, the data model can be extracted in
a designer-assisted manner.

NCBI:
Enyzme

Name:str

EC#:str

ID:str

Seq.:str

GeneID:str

NCBI:GeneName:str

ID:str

E-G

E-E

Homologous

Homologous

Organism:str

Figure 1. NCBI Data model for Task T

Data Source

Web Form/Page,
or Function Group
Function

Function
input/output

LEGEND

Data Source:
Entity:Attr

Function input/output,
not included in the
data model

Func:cost

Attr:type

Figure 2. (a) Legend forFunctional Models

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

NCBI

WebForm1:url

Enzyme
:EC#

Gene:
ID

F1:cost1

Enzyme:
Name

Gene:
ID

F2:cost2

WebService:
E-Search:url

Enzyme:
EC#

Gene:
ID

F4:cost4

Enzyme:
Name

Gene:
ID

F5:cost5

WebService:
E-link:url

Enzyme:
ID

Gene:
ID

F6:cost6 F7:cost7

Enzyme
:ID

Gene:
ID

WebService:
E-Fetch:url

Enzyme
:ID

Enzyme:
Seq

F8:cost8

Enzyme:
ID

Enzyme:
Seq

F3:cost3

Figure 2.(b) NBCI Functional Model for Task T
DDF

Library

BLAST

NCBI:
Enzyme:Seq

F9:cost9

gene2refseq

NCBI:
Enzyme:ID

NCBI:
Gene:ID

F10:cost10

getInfo

F12:cost12

E-Value:str

F11:cost11

NCBI:
Gene:ID

NCBI:
Enzyme:ID

NCBI:
Gene:ID

NCBI:
Gene:Name

Cutoff :int

Matrix::str :
restricted

Strand:str:
restricted

NCBI:
Enzyme:ID

NCBI:
Gene:Org

NCBI:
Gene:Org

Figure 2.(c) DDF Library Functions Required for Task T

2.2. Functional Model

 For functionality modeling of a given data source, each
related web form/page/service of a data source is represented
as a set of functions with the guidance of the designer. We
model the functionality of a web data source via a
hierarchical structure where each data source contains the
web forms/services/pages, and finally, the set of functions
are provided by each web forms/pages/services. Figure 2.(b)
illustrates the functional model for NCBI. Note that, in figure
2(b) the functions listed under each origin (e.g., BLAST,
gene2refseq) represent different querying capabilities of the
data source and have different input/output specifications.
The same functionality can be found at different web origins.
In this case similar functions with same input and output
specifications can be used as alternatives (See example 2).
 Example 2. In Figure 2.(b), F1, F2 and F3 represent
different functionalities of the WebForm1 and function F4 of E-
search web service can be used as an alternative to F1.

The designer creates a function by specifying its name,
url of its origin, and input/output parameters which are
mapped to an attribute or a set of attributes of the entities
represented in the data model of a given web source.
Occasionally, some functions may require input parameters
which are not included within the data model for a specific
task (e.g., E-Value for blast function in DDF library, function
F9). In order to specify the nature of input and output of the
functions in terms of the components provided in the model,
we denote them as [entity name]:[attribute name]. Besides,
each function has an associated cost value as discussed in
section 4. We also represent the DDF library like a web data
source without a data model specific to itself (i.e., it uses the
available data models of web sources to type its function
input/output parameters). Sample DDF library functions

required for Task T are demonstrated in Figure 2.(c). The
entire model is the same as that of a web source except the
fact that, instead of web forms or services, DDF library uses,
designer defined function containers which organizes similar
functions into the same named group. Note that the presented
function set is not complete in that there are many other
functions included in the library, and used in the context of
pathway-infer, but have not been shown here due to space
limitations.

2.3. Task Implementation Plan Representation

 Once the designer has the functional and data models for
a given task, the implementation plan for the task can be
constructed through designer guidance. The task
implementation plan defines the sequence of functions to be
executed, and the order of execution so as to complete the
task T. Therefore, each step of the implementation plan
corresponds to a function or, a set of functions where each
function provides an alternative (e.g., step 2 in Figure 3), or
enhances the output for that step (e.g., step 1 in Figure 3).
Multi-function steps require branch connectors. The designer
can put AND connector to mark that those branches are sub-
steps of the current step or, XOR to mean that it is sufficient
to execute only one of them. The task implementation plan
for pathway-infer is demonstrated in Figure 3.

F2::cost2Ename

GeneID

F4::cost4EC#

Input Adj.

Input Adj.
F7::cost7

GPid

F11::cost11

F8::cost8

Sequence

F9::cost9

HomGPid

Input Adj.

GeneID

F
ilt

er
.

F6::cost6

F10::cost10

F12::cost12

Gene Details

Start

Filter.

Input Adj.

E-Value:str

some

step 1 step 2

step 4

step 3

step 5

step 6

step 0

Filter.

AND

XORAND some

some

Figure 3. Task implementation plan for task T
 For most of the biological web data sources, it is
usually the case that a search process through a web form
results in multiple candidate results, mostly because (a)
keyword search is preferred, and secondly, (b) on a web
form, filling out all the input parameters is not usually
required. Thus, providing some filtering mechanisms
allows for a flexible and powerful integrated system and
extends the overall query capabilities of data sources.
Such an extension can happen in two different contexts:
(a) manual selection of the subset of the results obtained
at the end of a step, and (b) filtering through designer-
defined predicate enforcement (e.g., selecting EC(enzyme
commission) numbers that fall into a certain range).
Default behavior is that, after the completion of a step, the
integrated system executes the next step by providing
each object/value in the result set as a parameter to the
corresponding function of the following step. If the
designer wants to enable users to analyze and possibly

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

filter the results manually at the end of a step, the
keyword, “some”, is used to mark filtering points. In
Figure 3, for instance, step 2 is marked with “some”
referring to the fact that the result set of” gene id” values
will be filtered before they become inputs to the functions
f6 or f11 (as input parameters). The interactivity between
the integrated system and the user is represented with
dotted lines in Figure 3.

3. Data Model Extraction
 Before the construction of the task implementation
plan, data models of web data sources should be
extracted with guidance from the designer. In this
section, we describe the key steps of web data source
model extraction from web forms (due to limited space).
A similar model extraction design steps can be also
described for web services using the WSDL files [38].

3.1. Entity Type and Instance Discovery

 A web form query result page contains instances of
one or more entity types. Firstly, the designer locates the
web forms that would possibly be involved in the task
implementation. Next, sample query parameters are
submitted to the corresponding web query form. These
parameters are provided by the designer in a sample
query by filling out the corresponding web query form
elements. We give an example.
 Example 3. In our running example, one of the
alternatives for the first step involves finding genes by
querying NBCI with enzyme name as a parameter. Figure 4
illustrates NCBI Entrez Gene web form. Our sample query, in
this case, is “find all genes associated with name ‘kinase’”,
where the query parameter is the value ‘kinase’. Usually, this
query returns a set of intermediate results (Figure 5), and
clicking to one of the objects among the intermediate results
brings a final result page that describes the details of a
particular gene instance and is marked as an entity page
(Figure 6).

Figure 4. Sample query posed to NCBI Entrez Gene web form

Figure 5. Intermediate results obtained for the sample query in Fig.4

 The query scheme described in example 3 is valid for
most of the biological data sources; however, there are also
other data sources that do not conform to this paradigm

(e.g., [17]). To simplify the presentation, in this section, our
discussion does not take into account such data sources that
provide different querying models.
 Having located the entities as illustrated in example 3,
next, we attempt to find out the attributes of the located
entities. To this end, our goal is to automate the attribute-
value extraction process. Our approach is to compare
different instances of the same entity (i.e., different results
of the same web query form) and determine the repeating
and varying parts of the output web pages. Then, repeating
fields (e.g., gene name, organism) are presented to the
designer as candidate attributes, and the designer selects the
related attributes for the entity. Another alternative, but
more naïve approach, is that the designer marks the
required attributes manually, and the selected attributes are
added to the data model. We give an example.

Figure 6. Gene details result page with marked attributes of Task T

 Example 4. Figure 6 shows the attribute names of gene entity
that are marked by the designer as the ones needed in task T.
Although there are other attributes of the gene entity type, relying on
the task-oriented motivation of our framework, the designer selects
only those attributes that are interesting to him/her in the context of
the pathway-infer system. The selected attributes (shown as framed
in a rectangle in Figure 6) are also named by the designer.

3.2. Relationship Type and Instance Discovery

 Another main component of a source data model is the
relationships between the entities. We observe two types of
indicators towards the existence of a relationship between the
entities: (a) direct links between final query result pages (e.g.,
a hyperlink from pathway result page to reaction result
page), (b) un-hyperlinked common attributes, i.e., an entity
attribute that can be used to query another entity through one
of the available web forms. For the latter, to discover such
implicit links, one approach is to locate the common attribute
types belonging to the instances of different entity types
based on comparisons of their names, and the percentage of
value overlaps in a sample set of instances. To illustrate the
utilization of direct links we give an example.
 Example 5. Data model of NCBI for task T contains two
relationships (Figure 1.a, relationships E-G and E-E). The one
between enzyme and gene, i.e., E-G, can be inferred from the
direct links on enzyme (i.e., protein) and gene result pages. Figure
7 shows the direct links between gene ‘amn’ and its gene product,
‘amp nucleoisidase’, in NCBI result pages.

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

Figure 7. Enzyme-Gene association detection in NCBI

4. Task Implementation Plan Optimization
 A generated task implementation plan may have lower-
cost alternatives which can be constructed using other
functions in the function repository (either the functionality
toolkit or the DDF library). In this section, we define
several cost notions, and discuss alternative plan discovery
process and optimization issues.

4.1. Cost Evaluation and Measures

 In order to discuss task implementation plan
optimization issues, one needs to define cost measures to
compare different alternative plans. We start by defining a
set of cost measures for the functions which are the building
blocks of a task implementation plan. For (query)
optimization, traditional relational database management
systems provide known properties and statistical information
related to the various aspects of the stored data, which are
used in (query) optimization. In comparison, for task plan
optimization, such rich summaries (e.g., cardinalities,
histograms, etc.) are not available for the integrated system
we study, where queries, in the forms of web forms/services,
are submitted to multiple heterogeneous and autonomous
web data sources with different characteristics and
capabilities. Given these challenges, two different
approaches may be employed so as to model function costs.
One is time-based cost measures, and the other is result-
cardinality-based cost measures, i.e., average number of
objects returned by a function. In this section, we only
consider time-based cost measures. Next, we define the
specific measures of our function cost model.

Average Response Time (RT): The average time elapsed
from the submission of a query (as a function) till the
return of the first output object.
 Average Connection Time (CT): Average time to connect
to the data source and to submit the query on a web form.
Average Result Download Time (DT): After a query is
posed to a web data source, results may be returned in a
single XML file, a single web page, or multiple web

pages. Distribution of results to multiple pages brings
additional overhead to the overall execution time of a
function. In order to capture this behavior, we define
query result download time as the elapsed time from the
retrieval of the first result object till the last fetched object.
Average Output Processing Time(OT): Some web data
sources might provide their output in such a format that
may need pre-processing to get the desired function
output as specified in the function definition (e.g.,
extracting a set of EC numbers from a returned flat file).

Cost of a function is formulated as a weighted sum of the
values for each measure so that the designer can adjust the
weight parameters in the cost function in a way that best fits
to his/her needs. The general structure of the cost function
can thus be characterized as follows: fcosti = wCT * CT + wRT *
RT + wDT * DT + wOT * OT, where wi is the corresponding
weight assigned by the designer to each measure. Next, the
cost of step i in the task implementation plan is computed
based on the functions fj involved in that step and the
connector between the functions (e.g. ‘XOR’).

 In the step cost formulation, on the left, j stands for the
number of functions involved in step i, and stepconn indicates
the connector between the functions of a particular step. Note
that, when the functions of a step are connected by ‘AND’,
the cost of the step scosti is that of the function fcostk which
has the maximum cost among k functions in the step, i k
j, assuming that the functions can be executed in parallel
within different threads. For the case of connector being
XOR, a similar reasoning is employed.
 Finally, the cost of a path consisting of a sequence of
steps is computed by simply summing up the costs of
individual functions each of which is multiplied by the
expected number of tuples (objects) obtained from the
previous step and are to become input to the function at
hand. We obtain the cost of a task implementation plan
pcost recursively as: pcost=P(1,n)=scosti+RCi * P((i+1),n)
where n is the number steps in the plan, P(i,j) is the cost of
the subplan starting from step i and ending at step j
(inclusive), and RCi is the result cardinality of step i. We
give an example.
 Example 6. Concerning the cost of the task implementation
plan (see Figure 3) for our running example, pathway-infer, for a
single execution with a single enzyme name/EC number, we have
the following running times in seconds: fcostF2=0.542,
fcostF4=0.446, fcostF6=2.122, fcostF10=0.513, fcostF11=1.168,
fcostF7=0.412. Finally, using the observed RC values at each step,
the resulting step cost assignments are as follows: scost1 =
max(fcostF2, fcostF4) = 0.542, scost2 = min(fcostF7, fcostF11) =
0.412, scost3 = fcostF8 =1.863, scost4 = fcostF9=45, scost5 =
max(fcostF6, fcostF10) =2.122, scost6 = fcostF12=1.118. Thus, the
cost of the plan becomes:

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

7

8

2
9

6 12

2

3

1 1
4

5

*

*

*
*

*

F

F

T F
F

F F

fcost RC

fcost RC
pcost fcost RC fcost RC

fcost RC fcost

= 0.542+20*(1.863+2*(45+1*(2.122+15*(1.118)))) = 2,594
seconds = 43.2 minutes.
 We associate each function with two variables: its
estimated cost and estimated cardinality. The designer needs
to provide sample inputs for each function to compute initial
values for the estimated cost and cardinality variables.

4.2. Discovering Alternative Task Plans

 After the designer constructs the first implementation
plan for a specific task, it may be possible to build better
alternative task implementation plans. Two different
sources lead to alternative implementation plans: (a)
function(s) marked as interchangeable by the designer, (b)
function(s) that are inferred to be interchangeable from
the available function matchings. Ultimately, the system
presents the designer with a set of alternatives that make
the overall plan less costly.
4.2.1. Designer-defined Equivalences. The designer
may provide the system with a set of semantic
equivalence rules, X Y, which define functions (or
function compositions) X and Y as semantically related.
Semantic equivalence rules define function partitions
where each member of a partition can be replaced by
any member of the same partition in a task
implementation plan. If two functions/function
compositions are defined to be semantically related,
then they must have the same signature, i.e., the same
type of input/output parameters. We give an example.
 Example 7. Assume that the following semantic equivalence
rule set is given by the designer: = {F1=F2, F3=F4,
F5=F2·F3} where · denotes composition, i.e., pipelined functions
executed one after another, e.g., F2·F3 where F3 is executed on the
output of F2. Assume that a part of the overall task implementation
plan is performed by a subplan sp = F2·F3. Based on the given
rules, the system replaces some of the functions individually (e.g.,
replacing F2 with F1), or as a group (e.g., replacing F2 and F3 with
F5) with the other functions which are defined to be included in the
same partition by the given rules. As such, alternatives are
constructed, and lower-cost plans are added to the set of candidate
task implementation plans. Note that, given some equivalence rules,
finding the top-k optimal alternatives may be exponentially
expensive in the number of functions involved in the rules.
However, we assume that, in a typical integrated system, most of the
time, the number of functions involved in equivalence rules is small.
 A semantic equivalence rule can be defined by a simple
grammar G = (Vocabulary, Terminals, ProductionRules,
StartState) as follows. Vocabulary = {S, OP, expr},
Terminals = {func}, ProductionRules = {S expr OP
expr, expr func · expr | func, OP | | | | | = },

StartState = S where all operators in OP define a semantic
equivalence between functions. ‘ ’ is the most general
semantic equivalence operator, while other operators in OP
are specific versions of the general semantic equivalence
operator in that they convey additional information on the
quality of the relationship between the outputs of two
functions (compositions) involved in a semantic
equivalence rule. For instance, X Y states that X and Y are
semantically related, and given the same input, the output
of X is always a subset of the output of Y. Moreover, if X
OP Y is given, then X Y always holds where OP is any
semantic equivalence operator.
4.2.2. Inferred Equivalences. Based on the existing
equivalence rules, the integration system attempts to infer
new rules. To achieve this, we introduce a set of axioms that
can be applied repeatedly to infer all the rules implied by the
available ones. Axioms illustrated in Figure 8 are always
applied on the members of the same function partition
except for the augmentation. Moreover, the axioms
excluding augmentation never create new function partitions
whereas they add new members to the partition that they
apply. On the other hand, augmentation induces new
function partitions by creating compositions among the
members of different partitions. By generating a new
partition, we attempt to discover additional semantic
equivalences between newly composed functions.

Reflexivity is trivial, e.g. if X =Y then Y = X.
Augmentation: If X OP Y where OP { | | | | | =},
then for arbitrary functions Z and Q that can be composed with
X and Y (i.e., compositions X·Z, Y·Z, Q·X, Q·Y are valid),
X·Z Y·Z, and, Q·X Q·Y. In the special case of OP being
‘=’, augmentation propagates complete equality (=) as X·Z =
Y·Z and Q·X = Q·Y.

Commutativity: If X Y, then Y X, or vice versa and, if X
Y, then Y X, or vice versa
Transitivity: If XOP1Y and YOP2Z, then XOP3Z where

1 2

2 1

1 1 2
3

1 2

1 2

 ' '
 ' '

 ' ' ' ' , vice versa
 ' ' ' ' , vice versa

OP if OP is
OP if OP is
OP if OP OP

OP
if OP is and OP is or
if OP is and OP is or
otherwise

Figure 8. Axioms used for inferring new semantic equivalence rules

 Example 8. Assume we have the same set of rules given in
the previous example, i.e., = {F1=F2, F3=F4, F5=F2·F3} and
the subplan for which we generate alternatives, consists of single
function sp = F5.

F1=F2 (given)
F1·F3 = F2·F3 (Augmentation)
F2 F3 = F5 (Commutative Property)
F1·F3 = F5 (Transitivity)

Similarly, we can derive additional rules, and obtain the extended
rule set as ’ = {F1=F2, F3=F4, F5=F2·F3, F1·F3=F5,

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

F2·F4=F5, F1·F4=F5}. Alternative plan set then becomes =
{F2·F3, F1·F3, F2·F4, F1·F4} each of which is compared to sp =
F5 in terms of the overall cost. Then, less costly alternatives are
presented to the designer.
4.2.3. Generating Plans using Equivalence Rules.
Using the designer-defined and inferred equivalence rules,
we generate alternative task implementation plans. The goal
here is that, based on the semantic equivalence information,
the system attempts to find lower-cost alternatives for the
task implementation plan constructed by the designer. For
this purpose, after generating the possible plans, the system
computes the estimated cost of each alternative, and presents
the designer with a small set of “optimal” plans. Next, Figure
9 provides an algorithm sketch to illustrate how alternative
plans are generated using the equivalence rules.
All_Alternatives = {original plan};
Repeat
Pick a plan P from All_Alternatives that is not processed before,
and mark it as processed;
for each equivalence rule X op Y do
 if X is a subsequence of the plan P, then
 {Replace X with Y;
 Add the resulting alternative plan into the set All_Alternatives;}
Until there is no plan found in All_Alternatives that is not
processed;

Figure 9. Alternative plan construction
 Note that, the execution cost of this algorithm may
become exponential in the number of equivalence rules
in the worst case. However, we assume that, in
practice, the number of equivalence rules provided to
the system will not be very high.
 Once the alternatives are generated, the designer may
either keep the original task implementation plan, or choose
among the lower cost alternatives. After the designer
completes the construction of the task implementation plan,
and selects an optimization method, lower cost optimal
plans are generated accordingly. We define three different
optimization criteria: minimum cost, maximum cardinality,
and minimum cost per output (See Section 5).
 There are two scenarios to maintain an optimal task
implementation plan. One approach is, if desired, the
integrated system can update the estimated cost and
cardinality values of functions while the user is using and
running the system. According to new estimated cost and
cardinality values, if the current task plan is no longer an
optimal one, it is dynamically replaced with the optimal
version. Another approach is, the designer may want the
task implementation plan to remain static and change
occasionally. In this case, the estimated cost and cardinality
values of functions need to be recomputed periodically by
the designer. One can then use the following formulas to
update the estimated cost and cardinality values.
 fcost j = . fcost j-1 + (1-)fcost new and fcard j =

. fcard j-1 + (1-)fcard new, where fcost j and fcard j

are the estimated cost and cardinality values computed
at time j, and is the coefficient for tuning the weight
of older values in the final value.

5. Experiments & Results
 We have implemented Task T functions using a single data
source, NCBI. For each step in Task T, we developed multiple
alternatives by employing different data access facilities
provided by the data source. NCBI serves its data via web forms
and web services. In addition to this, we also used NCBI’s
“Entrez Programming Tools” in which one can run database
access commands using HTTP GET methods and the result is
obtained in XML format or one of several other formats.
 We needed an input set for each function to analyze
the number of outputs and execution times. We have two
particular functions in our function library, each of which
takes a keyword as input, and returns the corresponding
protein/gene ids of protein/gene entities containing the
keyword as a substring. We probed these two functions
with all possible strings of length two (i.e., aa, ab,…, zy,
zz) and collected two large sets of protein and gene ids.
Next, we created a smaller set by randomly picking 1000
ids from each of the large sets and used the smaller set as
input to our other functions to collect further data
instances consisting of various attributes such as protein,
gene and organism names, EC numbers and so on.
 In our experiments, we set the weights in the cost function
(See Section 4.1) to 1. Since all of our functions use remote
data sources and server loads vary over time, we computed
average execution times of the functions at different hours and
days. Sampling at different time points did not cause function
execution times to change noticeably with respect to each
other, since network delay affects all functions equally.
 Finally, we pipelined necessary functions and prepared a
task implementation plan for Task T. Then, we manually
generated rules defining the equivalences between the
functions. Without loss of generality, we modified the task
implementation plan in Figure 3 so that we had a single
function at each step by picking only one of the functions
merged with AND and XOR operations. BLASTP is the
most expensive function in the task plan. A single BLASTP
function takes between 30-60 seconds depending on the
query sequence. Hence, for experimental purposes, we
replaced BLASTP computation with NCBI BLink operation
which finds homolog proteins by using pre-computed
sequence alignments and is 50 times faster than BLASTP
operation. The task plan with Blink is still semantically the
same task plan employing BLASTP. In practice, it is easy to
replace BLink functions with BLASTP functions, later.
 In our experiments, we filtered the results of the
functions as follows. Functions taking keywords as input
are calibrated to return only top 20 results (or less) which
are the best substring matches with the input. For BLink
functions, we retrieved only the top 15 results with highest
similarity scores when more than 15 results are obtained.
 We estimate the execution time and the number of
outputs of a task implementation plan by using estimated
execution times and estimated cardinalities of functions.

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

Alternative plan generation algorithm (see Section 4.2.3)
detects several alternatives of the functions at each step of
the original task implementation plan. The algorithm
found four alternatives of step1, four alternatives of step2,
three alternatives of step3, two alternatives of step4, four
alternatives of step5 and a single alternative for step6.
Thus the alternative plan generation algorithm produced
4x4x3x2x4x1=384 alternatives for the implementation
plan of Task T. Due to the availability of many
alternatives for each task implementation plan step, the
number of alternative plans grows exponentially.
However, given the estimated cost and cardinality values
for each function, calculating the estimated cost and
cardinality of alternative plans can be done in less than a
second on an average computer (P4 2.4-1GB) since little
computation is required for each alternative, and the plans
are not too long. For experimental purposes, we also
executed each of 384 task plans with a small input set (5
protein names) to observe how good our estimations are.
 For Task T, we generated 384 different alternatives.
Only the names of 15 alternative task plans appear in
between every 25 plans along the x-axises of the graphs in
the figures. To distinguish the alternative task plans, we
enumerated the step alternatives in the result of the
alternative plan generation algorithm. Numbers in the
alternative plan names specify which step alternative is used
for a particular step. For instance, 2-3-2-1-2 is used as the
name of the plan that consists of 2nd alternative of 1st step, 3rd

alternative of 2nd step, 2nd alternative of 3rd step, 1st alternative
of 4th step and 2nd alternative of 5th step of the original task
plan. For the 6th step, there is only one alternative, so we do
not consider the 6th step in plan names.
 Figure 10.(a) shows the estimated execution times
of different task plan alternatives. We sorted the task
plan alternatives by their estimated costs to observe the
cost increase by alternatives. The estimated execution
time increases exponentially since it depends on the
number of outputs for each step, and is proportional to
the multiplication of the number of outputs from all
steps. Task plan with the minimum estimated
execution time is the time-optimal-plan.
 Figure 10.(b) shows the estimated cardinalities of
each alternative task plan. In figure 10.(b), we find
alternative task plans producing the maximum number of

results, and then, from among these plans, we can pick
the one with the smallest estimated execution time as the
cardinality-optimal-plan. We sort the task plan
alternatives by their estimated cardinalities to show the
correlation between real and estimated cardinalities.
 Figure 10.(c) shows the execution time of each
alternative task implementation plan divided by the
estimated number of outputs of the plan. In Figure 10.(c),
we can trace how the time needed to produce a single
output varies by changing the alternative plan. Highest
peak in this graph shows the time/cardinality-optimal-plan
which produces high number of outputs in low estimated
execution times. In Figure 10.(c), alternatives are sorted by
the estimated cost per output. Also note that, alternative
task plan orders in the x-axis of the graphs are different in
all three figures 10.(a), 10.(b) and 10.(c). Therefore we find
three optimal plan sets for different optimality criteria.

6. Related Work
Web data source integration in general is studied by many

researchers and involves mostly the integration of commercial,
single-primary-entity web data sources (e.g. book, car, real
estate) [20, 16, 15, 14]. As for the integration of biological data
[26], several integration systems have been built. Earlier
prototypes such as TAMBIS [30], DiscoveryLink [31] and
BioKleisli [32] focused on querying facilities of an integrated
system rather than the integration task itself.

myGrid [36] is a recent large scale application
integration middleware for bioinformatics services. In
myGrid, services (i.e., applications) are designed with open
grid services architecture to ensure interoperability and
reusability of the services. In addition, myGrid employs
DAML+OIL [5] to conceptually describe its services and
facilitate their discovery. In our work, we define the design
steps of smaller-scale focused data integration tasks and we
prefer the reusability of the finalized task rather than the
smaller task components. Thus we picked a simpler model,
namely ER model [13], as the underlying data model of web
data sources in order to reduce the development time.

Taverna [27], Kepler [34], BioPipe [35] and JOpera [4]
are open-source data source integration systems using
workflow semantics and are similar to our system in terms
of piped execution of heterogeneous functions (i.e., actors
in workflow semantics). Taverna system [27] incorporates

Figure 10.(a): Estimated vs. Real path
execution time for each path alternative

Figure 10.(b): Estimated vs. Real
cardinality of each path alternative

Figure 10.(c): Estimated vs. Real
execution time per output for each path

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

user input to locate the workflow component alternatives to
combine the results from alternative workflow
components. In our system, we employ equivalence rules
to check the integrity of a workflow (i.e., task execution
plan), and optimize the original workflow by generating
alternative workflows. None of Taverna, Kepler, BioPipe
and Jopera provides workflow optimization.

Query optimization is one of the most extensively
researched areas of database domain [19]. Workflow
optimization (i.e., task execution plan optimization) that
takes place in our work is similar to rule-based [29] and
semantic [37] query optimization work in the sense that a
set of rules are utilized to find the best equivalent of an
input query (i.e., task execution plans in our case). On the
other hand, our optimization algorithm is more flexible to
handle the incompleteness and varying reliability of
biological data. An optimized task execution plan
generates semantically equivalent results (from another
data source) to the original task execution plan. However
the optimized task execution plan is not guaranteed to
produce exactly the same result set with the result of the
original task execution plan. Such variations in the results
can be desired by biologists since the reliability and
performance of biological web sources are not the same.

Among the biological workflow research, Ludascher et al.
[7] describes the need for bioinformatics workflow
applications on a real world problem (promoter identification)
and formalizes basic structure of a workflow system. Addis et
al. [10] defines the requirements of a general purpose
workflow system. Buttler et al [12] introduces the problem of
integrating services from different sources and suggest using
semantic web as a resource discovery and data integration
solution. IBM BCS-AIS Life Sciences Practice team [24]
describes an algebra to analyze workflow systems and
develops a workflow system architecture to meet the
requirements of a bioinformatics researcher.

Kim et al works on an intelligent assistant workflow
construction tool called the Composition Analysis Tool
(CAT) [28, 33]. CAT can verify the correctness of a
workflow system and it suggests possible ways to extend
incomplete workflows. Interactive editing and verification
of workflows is out of the scope of this paper.

7. Conclusion
 In this paper, we have proposed a task-oriented,
toolkit-based integration framework for biological web
data sources. And, we have illustrated the resulting issues
by describing the construction of the pathway-infer
system using the functionality provided by the NCBI web
site. We have defined and modeled task implementation
plan representation. Furthermore, in the context of our
running task, we have discussed the optimization of an
implementation plan, and experimentally evaluated the
optimality of the generated plans. In addition, we have
defined a semantic equivalence model for the functions,
and formalized the notion of equivalence rules based on a
simple grammar. We have also presented a set of axioms
enabling the system to infer additional equivalences to be
used during the alternative implementation plan discovery
process.

8. References
[1] Overbeek, R. et. al., “WIT: Integrated system for high throughput

genome sequence analysis and metabolic reconstruction”, Nucleic
Acids Research, Vol. 28, pp. 123-125.

[2] aMAZE, described at http://www.ebi.ac.uk/research/pfmp
[3] Berkeley BioSpice, online at http://biospice.lbl.gov/home.html.
[4] Jopera system available at, http://www.iks.ethz.ch/jopera
[5] DAML homepage at, http://www.daml.org/
[6] Chawathe, S.S., Abiteboul, S., Widom, J., “Representing and Querying

Changes in Semistructured Data”, ICDE 1998.
[7] B. Ludäscher, I. Altintas, and A. Gupta. Compiling Abstract

Scientific Workflows into Web Service Workflows. In
SSDBM’03, July 09-11, 2003

[8] Stein, L., “Integrating biological databases”, Nature Reviews
Genetics, 4:5, 2003.

[9] Baxevanis, A.D., “TheMolecular Biology Database Collection: 2003
Update”, Nucleic Acids Research. 31(1), 1-12, 2003.

[10] Addis M, Ferris J, Greenwood M, Li P, Marvin D, Oinn T,
Wipat A. (2003) Experiences with e-Science workflow
specification and enactment in bioinformatics. Proc UK e-
Science All Hands Meeting 2003, pp. 459-466.

[11] Case Pathways Database System, available at
http://nashua.case.edu/pathways.

[12] David Buttler, Matthew Coleman, Terence Critchlow, Renato Fileto,
Wei Han, Calton Pu, Daniel Rocco, Li Xiong. Querying Multiple
Bioinformatics Information Sources: Can Semantic Web Research
Help? SIGMOD Record, Vol 31, No. 4, 2002.

[13] Chen, P.P., “The Entity-Relationship model: toward a unified view of
data”, ACM Transactions on DataBase Systems, 1:1, 1976.

[14] Jiying Wang, Ji-Rong Wen, Frederick H. Lochovsky, Wei-Ying Ma:
Instance-based Schema Matching for Web Databases by Domain-
specific Query Probing.VLDB 2004.

[15] Wensheng Wu, Clement T. Yu, AnHai Doan, Weiyi Meng: An
Interactive Clustering-based Approach to Integrating Source Query
interfaces on the Deep Web. SIGMOD 2004

[16] Hai He, Weiyi Meng, Clement T. Yu, Zonghuan Wu: WISE-Integrator:
An Automatic Integrator of Web Search Interfaces for E-Commerce.
VLDB 2003: 357-368.

[17] Reactome human pathways project, http://www.reactome.org.
[18] Kyoto Encyclopedia of Genes and Genomes, available at

http://www.genome.ad.jp/kegg
[19] Raghu Ramakrishnan, Johannes Gehrke. Database

Management Systems. WCB/McGraw-Hill 2004
[20] Zhang Z., He B., Chang K.: Understanding Web Query Interfaces: Best-

Effort Parsing with Hidden Syntax. SIGMOD 2004
[21] Michal, G., Biochemical Pathways, Wiley & Sons Inc., 1999.
[22] NCBI E-Utilities, available at http://eutils.ncbi.nlm.nih.gov.
[23] NCBI ESearch web services, available at

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/soap/eutils.wsdl.
[24] BioWBI, available at http://www.alphaworks.ibm.com/tech/biowbi
[25] gene_info and gene2refseq files, available at

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/.
[26] Thomas Hernandez, Subbarao Kambhampati: Integration of

Biological Sources: Current Systems and Challenges Ahead.
SIGMOD Record 2004.

[27] Taverna system available at, http://taverna.sourceforge.net/
[28] Jihie Kim, Marc Spraragen, Yolanda Gil: An intelligent assistant for

interactive workflow composition. Intelligent User Interfaces 2004
[29] Lane Warshaw, Daniel P. Miranker: Rule-Based Query

Optimization, Revisited. CIKM 1999: 267-275
[30] P. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens.

TAMBIS: Transparent Access to Multiple Bioinformatics Information
Sources. ISMB, 1998.

[31] L.M. Haas et al. DiscoveryLink: A system for integrated access to life
sciences data sources. IBM Systems Journal, vol40, 2001.

[32] Buneman P., Davidson S.B., Hart K., Overton C. ,Wong L. A Data
Transformation System for Biological Data Sources. VLDB, 1995

[33] Jihie Kim, Yolanda Gil. Towards interactive composition of
semantic web services. AAAI Spring Symposium, 2004

[34] Kepler system available at, http://kepler-project.org/
[35] BioPipe system available at, http://biopipe.org/
[36] myGrid project available at, http://www.mygrid.org.uk
[37] Grant J., Gryz J., Minker J, Raschid L.: Semantic Query

Optimization for Object Databases. ICDE 1997: 444-453
[38] W3C WSDL reference at, http://www.w3.org/TR/wsdl

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06)
0-7695-2590-3/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

